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Abstract

Approximate expressions for geodesic curves and the geodesic are-lengths

are obtained by straightforward methods which permit upper bounds of error to

be established analytically. The errors are typically less than 1.4 parts per

million, and even higher accuracy is possible with additional corrections.

Selected numerical examples are given, and calculated arc-lengths are

compared with values obtained with Andoyer's approximate formula.
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Parametric Formulas for Geodesic Curves
and Distances on a Slightly Oblate Earth

1. INTRODUCTION.

Hyperbolic Direction Finders at Very Low Frequencies combine relatively

high accuracy, I and operating ranges comparable to, and perhaps even larger
than, the earth's radius. It is therefore important for 6omputing lines of posi-
tion to inquire what allowance should be made for the fact that the earth is more
nearly an oblate spheroid than a true sphere. If it is assumed that the "first-to-
arrive" components of an electro-magnetic pulse travel from the source to the

receiver by the shortest possible surface route, and if it is further assumed

that the velocity of propagation is constant along this path, then the problem

of computing ray trajectories and travel-times is equivalent to mathematically

calculating geodesics and geodesic arc-lengths.
As a result of the considerable attention which has been devoted to the geo-

desic problem, several rather elegant approximate solutions ere already avail-

able. 2 In most cases, the accuracy of these solutions it high, but the limits of
error are somewhat obscure.

The treatment in the following pages is straightforward to the point of being

(Author's manuscript approved for publication B April 1963)
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elementary; the condition for minimum path-length between two arbitrary points

on the spheroid leads directly to a problem in the calculus of variations, which

is then converted to a differential equation in spherical-polar coordinates 0 and 0.

This equation is easily solved to a high degree of precision in terms of an "ad-

justed" co-latitude angle C, thus giving the equation of the geodesics in paramet-

ric form. Geodesic arc-lengths are also obtained in parametric form by approx-

imate integration along the geodesic curve. The analytic approximations used

are shown to be better than 1.4 parts in a million, and are thus more than ade-

quate for purposes of very long range radio location at the present state-ofa-the-

art. Furthermore, the approximations are of such simple nature that if desired,

an even higher accuracy can be obtained in numerical cases.

2. THE FIGURE OF THE EARTH, AND LATITUDE CONVERSION IORMULAS

Precision surveying and mapping techniques refer all latitudes and longitudes

to a reference spheroid which has been chosen to approximate the figure of the

earth, but whose placement and dimensions are to a certain extent arbitrary.

Such a frame of reference constitutes a geodetic "datum". In the United States

the North American Datum of 1927 is employed in modern work. In other count-

ries other datums are used, but the problem of converting coordinates in one

datum to those in another is beyond the scope of these considerations, which

assume that the North American Datum Is extendable over the whole earth, and

represents the shape of the earth with sufficient accuracy.

In this datum, the reference geoid Is the "Clarke Spheroid"'of 1856 whose

dimensions are listed in Table I, 3 along with certain derived constants used in

the analysis to follow.
In rectangular coordinates x, y, z the equation of the spheroid is

x2 ÷2 z2

a b

where the minor axis of the spheroid is taken to coincide with the OZ axis of

coordinates. In the corresponding polar-spherical coordinates (R, 0, 0), the
equation is:



Hence,

aR + cos2 0 (3)

Table 1. List of Constants

Semi Major Axis (a) - 6378,.2064 km

Semi Minor Axis (b) - 6358. 5838 km

4 -a -b =21.6226 km.

_A a -___b = ,0.o339008
a a

em 6367.39a51 km

b-S n A. 99660992ah2 0. a9b 003134 0

a

o 1.0034016

b ) 2 _ I 0. 0068148

U • 2 - 1 - 0. 0033900

Referring to Figure 1, the geodetic latitude of the point P is denoted %o

(This symbol is not to be confused with 0, the azimuthal angle in the polar co-

ordinate system.) The Y 0 Z plane cuts the spheroid in the ellipse

S+ 1(4)
a b7
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whence it follows that

dz b2 y )b2

where o is the geocentric latitude. But.

dz (8)
'z tan ( irl/2 "- cot Y(

and hence

b2 b'

Also,

cos 0va cot; b2 4  (8)

a2

sin 0a (9)
/a4 + b 4 

tan2o

It follows from Eq. (3) that

4

L 2
a 2- ta10)

b2 tan 'P
a
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Figure 1. Section of Spheroid by YZ Plane

In the analysis to follow, much use is made of the parameter • defined by

the relation:

sin 8sin( C i ÷ 87 2(11)

From this,

cos + Cos 0 (12)

and

tan I btan- tan 0 (13)
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The inverse relations are:

tan 0 41 J+ tang tan~ (14)

sin0 sing (13)

Cos
cos a - (16)

and, using Eq. (3),

R - 1 + 8 in 2 b l asin ( (17)

Differentiating Eq. (14),

1 . (18)
toso2 8 d Cos

and by Eq. (16),

dO _____V77 _ a/b

d 1 + a sin 2 C 1+ 8 sin2 C

Finally it is often desirable to convert directly from C to ýp, and vice versa,

without using 9 . In view of Eqs. (7) and (14). the needed relations are:

tan'P° = cot C (20)
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Cosp 1 - (21)
1 

2 2

b2

1

sin b 2  n2
(22)

a

The corresponding inverse relations are:

tan -!cot p (23)

co (24)

b

Thtoses of eqato/ a resymtrc

Cos (24)

I + ' c o tt 2

sin (26)
1 + tan 2

a

The two sets of equations are symmetric.

The qualitative nature of the angles C and • - is illustrated in exaggerated

scale in Figure 2. It will be noted that either

0> ' C 2 " I ý o r 0 ,.< C,• -. - T (2 6 )

3. THE DIFFERENTIAL EQUATION OF A GEODESIC, AND ITS SOLUTION

Consider a surface defined in spherical coordinates by the function

R IR ( 0 ). Then an arbitrary surface curve joining two points Pi and P 2 on
the surface can be defined by specifying 0 as a function of 9. The curvilinear
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/// -
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I, 2

0 8-I 2 (

Figure 2. Angdes i and f/2 - p as Functions of t

distance S between Pi and P 2 is then

d = p1

where

it is now a problem in the Calculus of Variations to chose 4 (0) so that S will
be a min~imum. The desi'ed function will be one of the extremails satisfying +
the Euler condition, which, since I does not contain € explicitly is simply:

---- (29)+
d rdI
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On integrating once,

constant (30)

In view of Eq. (28), this becomes:

R
2 

sin
2  d Q constant (31)

2~ + R 2 +R zsin2 z 0 )

whence,

C ./ 2 (~ (32)
(.)2 sin 2 a- C

where C is a new constant. In order to geometrically interpret this constant,

a short digression is now appropriate.

In Figure 3 an elemental portion P 1 G of a geodesic from point P 1 is shown.

The corresponding elemental components along the meridian and along the

minor circle are designated P1 V and PIW respectively. The angle VPIG is desig-

nated B, and is the bearing angle which the geodesic makes with respect to

north. In the limit,

tan B - 1 (33)
PI V

Now,

P 1 w W RsinO do

P -.R 2 +~~ dO 21
PRj-'+ L ( ddR + dR2

R2
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Sio IJ

x•

Figure 3. An Element of a Geodesic

In this, the negative root is chosen so that - d 9, and hence PFV, are positive.

It follows that:

tan B sin - n (34)

On making use of Eq. (32),

C

tan B (35)
V ( --A ) 2 t. 1 2 -C 2



C •in2 - C2(36)

the second step being a consequence of Eqs. (3) and (11). On re-arranging Eq.
(36), it will be found that

C sin2 sn B (37)

In order to avoid ambiguities of sign, the convention will be adopted that, at
the starting point P1 of the geodesic, the positive roots of all the radicals are to

be taken. It is then clear from Eq. (35) for example, that the sign of C is to be
taken to be the same as the sign of tan B.

If Beq is the bearing of the geodesic at = 90 (that is, at the equator), it
follows that

C sin2 Beq (38a)

At the "turn-around" point of the geodesic (in B - 0)

C2 . sin2 CN,S (38b)

where CNS represents the closest approach of the geodesic to the poles, and is

two valued. (For - -1 < Beq < 7r , the angles Beq and are equal.)
It is now seen that the constant C rather simply determines both the bearing

of the geodesic at the equator, and the closest approach to the poles.

Returning now to the differential Eq. (32), the next step is to change from the

variable 6 to the variable C [ see Eq. (11)] . Then

CA
do - - d. (39)

sine C in2 -C2
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where

(40) ii
+-d1+1 d

thanks to Eq. (19). Next, on differentiating Eq. (3) with respect toB,

. •j = 3sin 0 cos 9

I1+S8Cos 2

(41)8
- sin C cos

in view of Eqs. (15) and (16). Thus,

1 + S sin
2 C Cos

2

A v 1 +- : (42)
I+ 8 sin 2

Consider now the new quantity

At 1 i-usin 2 
• (43)

where

u -- 382
- (44)

It may now be shown after some algebraic manipulation that

<I
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A (45)

where

_ •5 (46)

in which for brevity,

Sa sin
2 

• (47)

Now, by Table I,

0.0068148

and hence:

g2- 4.64415 X 10-5

83 3.16490 X 10-7

84 2.15681 X 10-9 (48)
85 1.4698 X 1O011
a B 1.0016 X 10" 1 3

Hence it is clear that ( is very small, and that the error in substituting A' for A
will be approximately ( . it may be seen from Figure 4 that ý is everywhere

less than about 1.4 X 10 6. Thus, to a very high degree of precision Eq. (39) can

be written

1 - usin
2

d - C d (49)

sin C 2 • -
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0° 15* 300 46* so* "75 90 a

Figure 4. as a Function of

It will be noted from Eq. (39) that C2 H<1. Inspection of the denominator

of Eq. (0V) shows that at least for C 0 0, the geodesic cannot reach a latitude
higher than that corresponding to sin 2 C . C2 since beyond this point the co-

efficient of d ý becomes imaginary, (See also Eq. (38b),) ff 0 is to continue to

increase "heyond" the "turn-around" point, the radical in E~q. (49) must change

sign at that point. If d 0 / d C and C were plotted for a procession of points

following along a geodesiu which starts at the point P I in the Northern Hemi-

sphere, and runs in a more or leas North-Easterly direction, the result would

be similar to that depicted in Figure 5. There, starting at iPl0 C is decreasing

and d 0 1 d C is negative and decreasing, going to "minus infinity" at the turn-

around point T 1. Thereafter C increases, while d 0 / d C is positive and de-

creasing (upper branch in Figure 5). A minimum is reached at C f-i - , and then

d 0 / d C goes to "plus infinity" at the second turning point, T 2' and so on.

If 0 , and C , are the coordinates of P,, and 0, C are the coordinates of a

running point P on the geodesic, lying between P 1 and TV, it follows from
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0-J.U I

I ,I
SF"I w/l2 T 2 j ___

Figure 5. Derivative d--0 as a Function of

Eq. (49) that

S1 - u sin2

I - -, -f IfIj C2(0

I sin C

and this will be a positive quantity. If P lies on the far side of the turning point

Tl, the corresponding equation is,

0~ .0 C I l- usin 2• ; _ dC jC 1- usin 2
C-.l sin• sn2 -C d +C JTIi 2in Cin _ 2 C2d2 2

(51)



where allowance was made for the change in sign of the radical. As might be

expected it turns out that the result of integrating Eq. (50), namely M

CI
- Fcotl -Cu sin (S

Lin cot C :1-1(~~) (52)

includes the second case as well, provided the functions sin are taken to have

their "principal values" in the first case (that is, CI <C <TI), and the

next larger values in the region T1 < C<T 2 1 and so on. The asterisks are used

as a reminder to choose the correct range of the quantity so marked. To avoid

any possibility of confusion, reference may be made to Table If.

Table 11. Ranges of sin

Range of C Range of Ii

P1 to T1  0 to 1//2

* to T2  1/2 to 3u/2

T2 to T 3  Sit/2 to 51r/2

T3 to T4  51r/2 to 7v/2

etc. etc.

Note. T1 , T 2, T3 , etc. are the

successive "turn-around"

points of the geodesic.

Except in the cases C - 0, the longitude difference 41 - • continually increases

as the running point P moves forward along the geodesic, the contributions of all

parts of the integral jc are of one sign, there being no possibility of one part

cancelling, or tending to cancel, another. Under this condition it is justifiable

to conclude that the maximurn error in 0 - ,1 , is less than 1.4 parts per

million. Thus, even if 0 - Ol is as large as 180' . the error in 0 - 01 is less

than 0.000252", which at most would correspond to a positional error along a

parallel of 34 meters. Of course, if necessary, the integral in Eq. (50), for

example, could be broken up into sub-integrals and each corrected for the slight
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differenre between A and A , thus reducing the error to any desired limit.

Eq. (52) has an important simplification when the starting point P1 of the

geodesic is on the equator, for then the value of the indefinite integral at

vanishes, and

1 -ot) -cu i ( (53)

In terms of the bearing angle Beq at PI (See Eq. (36)

0" $i 0, si£n-( tab 13 cot - u sin Besin-'•OSe (54)*
a in abeq eq Gore

Eqs. (52), (53), and (54) for the geodesic may now be interpreted geomet-

rically in terms of a reference sphere (Figure 6) on which the polar and azi-

muthal coordinates are ý and 0 respectively. In Figure 8, the point A is anti-

podal to P 1 . and PP IA is a great circle such that the angle Z P1 PI at P1 is

B . Let AO be the azimuth of P1 
and C the polar angle.

In the spherical triangle Z P 1P , the "sine law" gives

sin .B sin y
sin q (55)

sin A 1

y being the angle P1 0 P
1 

. The "cosine law" applied to the same triangle gives

sn -Cos-- Ce (56)

and,

y - sin-(57

Eliminating sin y from Eqs. (55) and (56), gives

*Equations (54) and (72) have been programmed for an IBM 1620 computer
by the AFCRL Technical Services Division under contract AF 19(628)-411.
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sin Ao- tan Beq cot (58)

andj

sin (taneB cot ()9)

The geodesic, Eq. (54), can now be written

0 01 M A -1 _ uYsinB eq (60)

The "map" of the geodesic on the reference sphere may therefore be constructed

by drawing a great circle, and then reducing the azimuthal angle of each point on

it by u, sin B eq , where V is the angular measure of distance along the great

circle. In Figure 6 the broken line P 1 PP 2 represents the geodesic derived from

the great circle.

Any geodesic from P1 (on the equator) with 0 <Beq < will intersect the

equator again at P 2 which falls West of the antipodal point A by the small arc-

distance

P 2 A % a u sin Be (61)

(See Eq. (80).) The same geodesic, if continued through the southern hemisphere,

will by symmetry intersect the equator again a distance 27r u sin B eq , west of
P A

PI. and so on. Unless the exact value of i is a rational number, the geo-

desic will never close on itself but will continue to "creep" round and round the

sphere. Figure 7 is intended to illustrate qualitatively the course of geodesic

from the equatorial point PI as viewed from above the north pole of an earth

with an exaggerated degree of flattening. The dotted portions of the curves

represent parts of the geodesic in the southern hemisphere. The g•eodesic may

be visualized as the curve generated by tightly winding a thread over the surface

of the (frictionless) spheroid, starting at P I and passing through P2

In the special case C n 0 the geodesic starts out due North, and it is intuitive

that it will follow a meridian. For this case, Eq. (53) correctly gives
0'01 0 .
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P
S TI LE

0 P2 A

Figure S. The Reference Sphere

Another special case of interest is when Pl is on the equator, and C--- 1.,
that is, the initial bearing approaches 90' which would take the curve on an east-
ward, equatorial course. In this case Eq. (53) is properly indeterminate, since
on the equator 0 may have any value.

Finally, there is an interesting characteristic of the geodesics in the vicin-
ity of the point A antipodal to the equatorial starting point Pl. By Eq. (61) it
will be seen that regardless of the equatorial bearing angle Beq, the small

equatorial arc P A (See Figure 7) can never exceed a value of approximately

v u. This defines a sort of limiting point LW such that the angular distance
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P,,

P

Figure 7. Multi-Turn Portion of a Geodesic

LW A ir u (62)

and there is a similar point LE on the east of the antipodal point. If P 2 is pre-

cisely at the antipodal point, the shortest route from P, to P 2 is precisely over

a pole. If P 2 lies between Lw and A, or A and LE, the shortest route is neither

polar nor equatorial, but is an arc lying in either the north or southern hemi-

spheres. However, if P 2 lies anywhere on the equator outside the small arc

LW A LE , the shortest route will be precisely along the equator itself.

4. ARC LENGTH ON A GEODESIC

The arc length along a geodesic between the starting point P1 and an arbi-

trary running point P will be found by performing the integration indicated in
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rEq. (27), namely

P P
s= f ds If d8e (63

p1  P1

where in view of Eq. (32), Eq. (28) becomes

2

sin~ -l I(R

. 2 2 (64)

"a sinG 1 - C )

a

Using Eq. (3)

R2  1

a2 + 8cos
2G

and hence by Eq. (11)

Ssin2 0 - sin
2

a

On squaring Eq. (17) and multiplying by Eq. (15),

2
R2 sinG a V,+ sin21+ S
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On substituting, Eq. (65) becomes

l+ sin2  1*.1 d.2
ni 1-C"[=a 1+ _S sin2 -2 sn(6

Putting this in Eq. (63) and changing variable from 0 to

SA sin
S - a J d• (67)1 •/st2 _C- C2

where

1+ sin d R) 
2  dB

A= 1i+ \ d8

is precisely the same quantity already encountered in the previous section, (see

Eq. (40) ) where it was shown that it could be replaced by the quantity At of Eq.

(43) with an error less than 1.4 parts per mlllion.* (In Eq. (87) the minus sign

was chosen to give a positive value of S when 4sin-7 C2 is regarded

as starting out positive at C = C1 as in Section 3, and again changing sign at the
"turn-around" point.) Thus

( 1 - u sin
2  

sin d
C - a •in c2a - (6 C2

On making use of the identity:

*As mentioned previously in connection with the integral of Eq. (50), the range of
integration can be broken into segments for each of which a correction can be
applied for the slight difference between A and Al, thus obtaining an even more
precise approximation.
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Eq. (68) becomes:

2' f sine d~

S2 a a\/. (i+C) .'sin 2  .C 2

(70)

2 2
au 4 I+ - 2am n2 sin C d C

"co uJ iJ .cc 2i2

If the starting point of the geodesic is on the equator, C , and the

indefinite integral vanishes at the lower limit, giving simply

co u •i

S a ua z- *C2) I-i -+ Cs2sinCosj (72)

In the last two equations, the asterisks (as before) are reminders to change

from "principal values" to the appropriate branch. In this connection it is noted

that in the first integral of Eq. (70), the integrand is essentially positive since at

the start, d C is negative, and later When the radical changes sign, so also does

d • . In the second integral, the integrand

I + C
2 -2 sin

2

V/ n _c 2 sin (73a)
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1

Figure 8. Qualitative Behavior of Integrand ItQI

has a behavior of the type illustrated qualitatively in Figure 8. Starting at P1I

on the equator, Q C277 . Then following along the geodesic Northerly

and Easterly, Q increases to zero when sin an the Cprace

2
+ - as the turning point of the geodesic is reached. Here the radical changes

sign, and Q increases from - ,and so on.

It follows from these considerations that fQ d C mu~st have a be-

havior somewhat as shown in Filgure 9. Since when starting out along the geo-

desic from P,, d is negative, the integral at first increases, reaching a mex-

=1 +

w i

omun when equtor + an - 2.then deceasslowing o alon the firdsit Nothernin

22



25
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I I T2

0 
Ir

Figure 9. Qualitative Behavior of J Q d

point T 1 . Proceeding further along the geodesic, Q is negative and d • is pos-

itive, so that the integral goes negative, reaching a minimum when sin I C_2 .

It then increases through zero (when the geodesic crosses the equator) and so

on. Evidently then, the sign of the quantity is to be changed at

each reflection point. In Eq. (72) the factor cos C automatically takes care of

the sign change at the equator.

In Eq. (72). as already known from ,iect'on 3, the quantity sin ( .

is simply the arc P P (in radian measure), on the reference sphere. Figure 6.

The factors containing u are the "corrections" applied to this great circle

distance to obtain S
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The difference in the two routes

2
S S irau (I - sin3 eq) (0,B eq / 2 47T/

eq 2 e' e

17 au

can be as large as a. or about 33.96 kmn.

Shortest Distance Between Ordiniry Points on the Equator

For all pairs of points on the equator excluding those considered abo-.,e, it

is clear intuitively that

S = a A ) (79)

where (A ) is the difference in longitude in radians. On setting

C I in Eq. (72) an indeterminancy arises, but this can be avoided by regarding

the equatorial arc P 1 P 2 (See Figure 10)as the limiting case of the geodesic arc

PIP1 , 2 when thd point P 2 moves approximately along the meridian NP 2 to

approach P 2 ' Thus for the point P 2 , the ý - value approaches r/2, and so

does B , so that in the limit, Eq. (54) for the geodesic curve becomes:eq

o __ ,in-I uin
c si cOs -eje uin- o eq)

I - u ) sin o (80)

Thus if ý and B are varied so thateq

k coss (81)

eq

is a constant, the point P 2  will approach P 2 Then since C = s-n2 Beq by

PRECEDING PAGE BLANK
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P1  P

Figure 10. Limiting Process for Two Points on the Equator

Eq. (38a), it follows from Eqs. (72) and (80) that

S--a(1-u) sin k =a(A ) (82)

and this is the same as Eq. (79), as expected.

5. NUMERICAL EXAMPLES

5.1. Meridian Quadrant

As a first example, the length of the meridian quadrant will be calculated

with the formula of Section 4. using the Bessel Spheroid,
4 

for which the meridian

quadrant is 10,000.8557658 km. The semi-major and semi-minor axes are
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!•"a =6377.39715500 km

b =6358.07896325 km I

whence it follows that,

S=0.00671R 218

and

u 0.0033426786.

By Eq. (74)

mq 2 2(

-= 10,000.84923 (83)

This differs from the correct value by only about 6.5 Lneters or Fabout 6.5 parts

in ten-million.

5.2. Geodesic at B =45' from Point on the Equator of Clarke Spheroid

For this

C =sin B eq .--

n ) 5 .

an Eq 7. 3750 km)frtegodscbcms



30

0 sin (cot ) -sin .,, osnaC (84)

5.2.1. At the point where the geodesic reaches latitude 6 80" beyond the

first turning point, this equation gives

" - 1 =144.73560 -- L 135° (85)

= 144.4120O

Latitude • 60* corresponds to geodetic latitudew = 30.0843g. By Eq. (72)

s a[ (1-.75.) *in"(1) -+ .ý

a 5 7.L945-75X?:5
0  

+ 0.00042375]

2.3506276 a

o 14,992 2 788 km

5.2.2. At the point where the geodesic reaches latitude • 60' before the

first turning point, Eq. (84) gives

* - e 35.26440 - 45* (86)

o 35.15650

By Eq. (72)



a 1 - .75u) 1in' 7 V 4 2

F0.9974575 X 450 0.000423751
a L7.2957795450 "

. a [0.78340129 - 0.00042375]

f 0.782977- IS

. 4993.992, km

A.2.3. Length of geodesic arc on the previous curve, between points where

f 600 ( 30.08340 ) is simply

14,992.788 - 4,903.902 = 9,998.796 km.

6. NOTE ON ANDOYER'S FORMULA

For calculating geodesic arc-lengths, use is often made of a formula due to

Andoyer, which, in the present notation, is

S a a + 8S (87)

where a is the great-circle distance between two points computed as if the

earth were a sphere; that is,

cosr a sin p, sin•p2 + cositp cooaP 2 cos (01 02 (88)

and
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BS p (sinPI + sin u 2 ) 2 q (sin ý9 slnP2 ) (89)

p a - b 3 s i n ---- - ( 9 0 )

2

q a -b 3Ssin a+a0 (91)

For two points on the equator, 'Pl ' 92 * 0, and as 0. (The case
when a- =it , for which p is infinite will be excluded from the present consider-

ation.) Then by Eq. (8?),

S za o (92)

This is evidently the correct answer as far as the equatorial route between P 1

and P 2 is concerned. However, as discussed in Section 4, if the longitude

02 of P 2 is such that

@10 + 1r] >02 >[ 01+ 1 (1-u)1 (93)

the sub-polar route is shorter than the equatorial route by the amount [ see

Eq. (78)]

S S au (l-sinB) 2  (94)"eq 2

which can be anmoot as much as 33.96 km. Thus in such cases, the Andoyer

Formula, while still giving a "geodesic distance", gives the longer rather than
the shorter extremal. In view of these particular arcs of nearly 1800 for which

Andoyer's formula fails, it is of interest to compare the results of Andoyer's

formula with those obtained by the use of Eqs. (71) or (72) in Examples 5.2,

5.2.1, and 5.2.2. It will be seen that the agreement is excellent in the following

examples.
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6.1. Dtstance between ( 1 01 0 and (2= 144.4120*, (p2 30.0843).

This corresponds to Example 5.2, where it was found that S P 14,922.789

kim. Now,

cos a= coEJ 30.08430 cos 144.41200 -0.70367249

a 134.72240 2.351349 radians

3 sin a 3X0.7105245 0 2.1315735

in 2 (1- os _ o) 0.85183625
oin 2

C0o2 -L1 ( I + cos ) 0.14818378

a - b 2.131,13_- 2.351349 &a-b 1.483331b9
0.1 48p 76 8

q a - b 2.131573 + 2.351349 . a-b 5.28265700
8 0.85183825 8

S (p-q) sin2 
O = - -sn 30.08430 (1.48333169 + 5.28265700)

88
2162 ( (0.5012736) 2 6.74598889

- 2.702 825XO.25127.2XS.74598869

- - 4.5815577

and

S a a + BS 14,997.39 - 4.58 14,992.81 km.
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This is about 0.02 km longer thani the value of Example 5.2.

6.2 Distance between ( 0, %o - 0) and (02 35"15650, p 2  30.0843*)

This corresponds to Example 5.2.1.

Now,

cos a = cos 30.0843' cos 35.1565- 0.8652888 X 0,8175822 -•0.70744472

a = 44.9724* = 0.784916 radians

3 sin a = 3 X 0.7067660 = 2.120298

sin2a .Isin2F = -(1 -cos a) " 0.1462776

2 a =ICos 2 = (1 + cos) 0.8537224

a - b 2.120298 - 0.784918 a - .
p 8 0.8537224 8 1.54188

q a - b 2.120298 + 01784916 a - b
8 0.1462776

Ss = 8-b sin2 30.08430 ( 1.564188 - 19.86096

- 1.226 (0.5012736)2 18.29677

= - 2.702825 X 0.2512752 X 18.29677

= - 12.426830 km
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and

S fa a C + S S 5008.356 - 12.426 * 4993.930 km

This answer is slightly less (0.06 kin) than that obtained in Example 5.2.1.

6.3 Distance between (01 - 35.1565% 1 p 30.0843*) and (02=144.412J*,

2 - 30.08430).

This corresponds to Example 5.2.2.

Now,

coo C - sin
2 

30.0843' + cos
2 

30.08430 coo (144.4120* - 35.15650)

- 0.2512752 + 0.7487247 cos ( 109.28550

= 0.2512752 - 0.2469153

- 0.0043599

u - 89.7502* - 1.566436 radians

3 sin a - 3 (0.9999905) - 2.9999715

- 2io a 0.49782005

Cos 2 2- (1 + coSo) 0.50217995

p a - b 2.9999715 - 1.566436
0.50217S%5 - 2.854625
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Sa - b 2.9999715 + 1.568436

• q = 8 0.49782005 * 9'172807•

BS 4 p sin2 30.08430 - 21.622 X 2.854625 Xo.2512752 I.

= 7.754907 km

S z acr+ BS -9H91.052 + 7.755 - 9998.807 km

This value is only 0.011 km greater than the value found in Example 5.2.2.
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